Skip to main content

Problem of the Week, # 2

All problems are now on my new site: https://cognitivecardiomath.com/free-resource-center/

I used this week's problem in class today (6th grade), for early finishers. Because we haven't gotten too "into" a particular topic, I made the problem a mix of operations - mostly division and multiplication, but I saw students using addition as well.

I really enjoy talking with my students about what they are thinking when they try to solve problems, for a few reasons - because 1) they think about problems in a different way than I do; 2) it makes me rethink the wording of the questions I ask (which makes me improve); and 3) I learn that there will be several ideas to share with class.

I noticed a few different things when the students were solving the different parts of this week's problem:
For part A, I multiplied 85 times 3 to get the total number of cookies and then divided by 24 (when I wrote the problem, I wanted the students to have to interpret the quotient, so I approached it with a desire to use division). And most students did the same thing (except for the few that multiplied 24 x 3 - that gave me some good info: -), but one student was just sitting and thinking, so I asked him what he was thinking. He started to say he divided 24 by 3 and then paused - I almost interrupted his thinking to redirect him to my way, but I successfully restrained myself, and asked why. He said he was thinking about how many baggies could be filled with one batch, and since the numbers worked nicely, he could definitely say that one batch would fill 8 baggies. I really liked his thinking process, because it hadn't occurred to me to do it that way. Now, if the numbers hadn't worked out evenly, it might not have been the best approach, but we can expand our class discussion to explore that. After deciding he could fill 8 baggies per batch, he added on sets of 8 until he reached the correct number of batches.

As some students worked on part C (below), I started to think that I should adjust the wording of the problem. When I wrote the problem, I thought it would be clear that the number of cookies for part C was the same as part A, but some students thought of the part C as using 85 baggies of 2 cookies (same number of baggies), instead of using the same number of cookies. As more students worked on it though, other students seemed to understand that the number of cookies should be the same as the original number they were working with, so I haven't changed it yet. If you use the problem, please let me know what you think.

Again, a few students approached this part in a different way than I did - they said that in both cases, the cookies cost 25 cents each. Using this reasoning, some students said the cost was the same, while others did not - again, a great opportunity for discussion, both in small groups and as a whole class.

To see and/or use the entire problem and answer key, click on the link below the picture.

problem of the week cognitive cardio math
Click to access

To access all of the Problem of the Week free resources, click here!

Have a great week!

Comments

Popular posts from this blog

Memory Wheels - First Day, Last Day, and Any Day in Between!

This post has been moved to:  http://www.cognitivecardiowithmsmm.com/blog/memory-wheels-first-day-last-day-and-any-day-in-between

Differentiation and the Brain - Introduction

It's summer-time and time to get some reading done! Myself and my Tools for Teaching Teens collaborators are going to read and review Differentiation and the Brain, How Neuroscience Supports the Learner-Friendly Classroom , by David A. Sousa and Carol Ann Tomlinson.We will each be reviewing different chapters, and those blog posts will be linked together as we go. If you're interested in learning more about this book, check back and follow the links to the different chapters:) I'm going to give a quick review of the book introduction here, and then later today I'll be reviewing Chapter 1. According to the authors, differentiation is brain-friendly and brain-compatible! They describe the rise, fall, and rise of differentiation, starting with the one-room schoolhouses, where teachers taught all subjects to all students, of all ages, and HAD to differentiate - there was no other way! As the country's population grew, public schools grew, and students were separat...