Skip to main content

What's Math Got to Do With It - Intro and Chapter 1

In the introduction to What's Math Got to Do With It, Boaler notes interesting trends - many adults say they hated math in school, but like math in their work. Many adults enjoy activities like Sudoku, that require logical thinking, but they did not enjoy their math experiences in school.

The math that is needed for working situations is logical thinking, comparing numbers, analyzing and reasoning. People need to be able to reason, problem solve and apply methods to new situations. An official report examining math needed in the workplace revealed that estimation is the most useful math activity.

Boaler references Conrad Wolfram's TED talk in which he talks about math as a four-step process: posing a question, constructing a model to help answer the question, performing a calculation, and converting the model back to the real-world solution by seeing if it answers the question.

Boaler shares that her book will identify the problems that American students encounter and will share some solutions.

In Chapter 1, Boaler talks about the difference between how students view math and how mathematicians view math: students see math as "numbers" and "rules," but mathematicians see math as "the study of patterns" or a "set of connected ideas."

According to Boaler, math is a "set of methods used to help illuminate the world." She discusses the Fibonacci sequence and the golden ratio, which many middle and high school students have never heard of.

Boaler discusses quite a few differences between "school math" and "mathematician math." Mathematicians work on long and complicated problems that involve combining many areas of math, while school children spend hours answering short questions that address the repetition of isolated procedures. Long, complicated problems encourage persistence, and an important part of "real math" is the posing of problems. According to Boaler, mathematics involves going from answer to question, while computation goes from question to answer.

The work of mathematicians is collaboratory. Mathematicians do not work in isolation - when interviewed, mathematicians have stated that they collaborate to learn from one another, increase the quality of ideas, and share the "euphoria" of problem solving. However, Boaler states, there are still many silent math classrooms where students work in isolation.

I enjoyed reading about the "meaning" of math, and I will pose the question to my students this week - "What is math?"

Reading this chapter has inspired me to create a couple posters that reflect what math really is.


Comments

Popular posts from this blog

Memory Wheels - First Day, Last Day, and Any Day in Between!

This post has been moved to:  http://www.cognitivecardiowithmsmm.com/blog/memory-wheels-first-day-last-day-and-any-day-in-between

Help Students Learn to Manage Their Time

In my early years of teaching, I didn't always know what to say when students told me they didn't have time to do their homework (other than something like, "You must have had some time between 4:00 and 9:00!). There were all kinds of reasons - they had sports practice or a lesson, or they had to go to their brother's or sister's game/practice/event of some kind; or their parents took them shopping or out to eat. At that time I had one child (who was 2 when I started teaching), so I didn't have the experience from a parent's point of view of making sure I was getting my kids to their activities, getting done all the house-related things, and also making sure they were getting their homework done. This made it a little difficult for me to relate to the students' situations, but I tried to help them think about how much time they did have to do their work. Being involved in activities definitely reduces time for schoolwork, but it doesn't mean t...